Ответ: Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: a2=b2+c2−2⋅b⋅c⋅cosA. .
Объяснение:
АД=2ВС, S(АВСД)=90, ЕК - высота, ЕК=Н.
S(ОМРN)=?
В трапеции треугольники АОД и ВОС подобны (свойство трапеции), значит ЕО:ОК=ВС:АД=1:2 ⇒ ОК:ЕК=2:3. ОК=2Н/3.
Пусть ВС=х, тогда АД=2х.
Площадь трапеции АВСД: S(АВСД)=Н(х+2х)/2=3Нх/2.
S(АОД)=АД·ОК/2=2х·2Н/6=2Нх/3.
АВСР и РВСД - параллелограммы так как ВС=АР=РД и ВС║АД.
Диагонали параллелограммов пересекаются в точках М и N, которые находятся в центрах параллелограммов, значит точки М и N лежат на средней линии трапеции, следовательно высоты треугольников АМР и PND, опущенные на прямую АД, равны Н/2.
Площади треугольников АМР и PND равны т.к. их основания и высоты равны.
S(АМР)=х·Н/4.
Теперь, S(OMPN)=S(AOД)-2S(АМР)=2Нх/3-Нх/2=(4Нх-3Нх)/6=Нх/6.
Найдём отношение известных площадей:
S(АВСД):S(ОМРN)=(3Нх/2):(Нх/6)=9:1
Итак, S(ОМРN)=S(АВСД)/9=90/9=10 - это ответ.
<span>Наверное, АВС - прямоугольный равнобедренный треугольник. Угол В - как раз будет прямым. Медиана ВD делит пополам сторону АС по определению. Теперь рассмотрим два получившихся треугольника ABD и BDC. Оба они равнобедренные. Так как BD - половина AC. Значит BD=AD=DC. Угол BAC равен углу BCD. Обозначим эти углы за а. Тогда Угол ABD равен углу CBD. А большой угол По условию сумма углов в треугольнике равна 180 градусам. Значит 4a=180a=45</span>
Так как СД это высота она делит угол С на 30 градусов надо 8:2получится4
<u>Площадь сектора выражена формулой</u>
S=а πR²:360° , где а - центральный угол сектора