Решение:
∠ВАВ₁ = 45° по условию ⇒ ∠САС₁ = 45°. Так как основание АС треугольника АВС перешло в АС₁, то АС = АС₁ ⇒ треугольник АСС₁ — равнобедренный, откуда ∠СС₁А = ∠АСС₁. По теореме о сумме углов треугольника получаем: ∠СС₁А = ∠АСС₁ =
(180° - ∠CАC₁) =
(180° - 45°) =
× 135° = 67,5°.
∠ВСА = ∠СС₁А = 67,5°. Треугольник АВС — равнобедренный по условию ⇒ по свойству равнобедренных треугольников ∠САВ = ∠ВСА = 67,5°. По теореме о сумме углов треугольника: ∠АВС = 180° - 2 × 67,5° = 45°.
В треугольнике ВАК ∠КАВ и ∠АВК = 45° ⇒ ∠ВКА = 90° ⇒ треугольник АВК — прямоугольный.
ВК = АВ × sin45° = 6 ×
= 3
∠СКВ₁ = ∠ВКА = 90° как вертикальные ⇒ треугольник СКВ₁ — прямоугольный. ∠В₁ = ∠В = 45°. По теореме о сумме углов треугольника: ∠В₁СК = 45° ⇒ треугольник В₁СК — равнобедренный. КВ₁ = КС = ВС - ВК = 6 - 3
В₁С = КС ÷ sin45° = (6 - 3
) ÷
= (6 - 3
) ×
= 6
- 6
P(CКВ₁) = (6 - 3
) + (6 - 3
) + (6
- 6) = 12 - 6
+ 6
- 6 = 6
Ответ: 6.