№1
Дано:
АО=ОС
<А=<С
Решение:
Рассмотрим треугольники АОД и СОВ, в которых АО=ОС (по условию), а <А=<С(по условию).
Докажем, что эти треугольники равны:
АО=ОС; <А=<С; <АОД и <СОВ равны, как вертикальные углы. Треугольники равны по стороне и двум прилежащим к ней углам, все соответствующие элементы равны.
Ответ: ЧТД(что и требовалось доказать).
№2
Дано:
<АОС=<ВОС
<АВО=<СВО
Решение:
По условию задачи нам сказано, что <АОС=<ВОС, <АВО=<СВО. Рассмотрим треугольники АОВ и ВОС, в которых <АОС=<ВОС, <АВО=<СВО, а сторона ВО общая, значит эти треугольники равны по стороне и двум прилежащим к ней углам. Все соответствующие элементы равны.
Ответ:ЧТД.
№3
дано
треугольники АВС и АДС
<АСД=<ВАС
<САД=<ВСА
Решение
рассмотрим треугольники АВС и АДС, в которых <АСД=<ВАС, <САД=<ВСА, а АС общая, значит они равны по стороне и двум прилежащим к ней углам. все соответствующие элементы равны.
ответ:ЧТД.
№4
дано
<А=<Д, <К=<С, АС=КД
решение:
рассмотрим треугольники АВС и КРД, в которых углы К и С равны, как накрестлежащие при пересечении параллельных прямых, углы А и Д равны, как накрестлежащие при пересечении параллельных прямых, АС=КД. эти треугольники равны по стороне и двум прилежащим к ней углам, все соответствующие элементы равны.
ответ:ЧТД
№5
дано
<А=<С, ДВ=КВ
решение
рассмотрим треугольники АКВ и СДВ, в которых <А=<С, ДВ=КВ, <В-общий. эти треугольники равны по стороне и двум прилежащим к ней углам.
ответ: треугольники АКВ и СДВ.
№6
дано
<А=<С, <ДАС=<ВСА
решение
рассмотрим треугольники АВС и АДС, в которых <А=<С, <ДАС=<ВСА, АС-общая. эти треугольники равны по стороне и двум прилежащим к ней углам. все соответствующие элементы равны.
ответ: ЧТД.
Ответ:
В объяснении.
Объяснение:
Если периметр (сумма четырех, попарно равных, сторон равна 48 см (дано), то сумма двух смежных сторон параллелограмма равна
48/2 =24 см. Тогда
А) Х+(Х+3) = 24 => смежные стороны равны по 10,5см и 13,5см.
Б) Х+(Х+7) = 24 => смежные стороны равны по 8,5см и 15,5см.
В) Х+2Х = 24 => смежные стороны равны по 8см и 16см.
Конус — это тело, ограниченное одной полостью конической поверхности и пересекающей её плоскостью не проходящей через вершину S. Часть этой плоскости, лежащая внутри конической поверхности, называется основанием конуса. Перпендикуляр опущенный из вершины на основание, называется высотой конуса.
Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса . В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса .
Решал по теореме косинусов (извини за корявость делал на коленке)