Предположим обратное.
тогда a>(a+b+c)/2
раскроем и перенесем. 1/2a>b/2+c/2
домножим на 2 a>b+c
есть теорема, говорящая о том, что любая сторона меньше суммы 2х других. противоречие, значит предположение неверно.
Tg(BAC)=BC\AC По теореме Пифагора найдём сторону ВС:
ВС²=АВ²-АС²
ВС²=5²-4²=25-16=9
ВС=√9=3
tg(BAC)=3\4
1) Раз плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см.
2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
Так
можна
наверно я так думаю
Это из какого класса задача???