Треугольник не может существовать, если длина любой стороны превышает или равна сумме длин двух остальных
Этому критерию не соответствуют листочки 2. (12 = 6 + 6)
5. 120 > 100 + 15
Ответ: 2; 5
По формуле Герона находим площадь основания.
р = (16+63+65)/2 = 144/2 = 72 см.
So = √(p(p-a)(p-b)(p-c)) = √(72*56*9*7) = √<span>
254016 = 504 см</span>².
Если все боковые рёбра имеют одинаковый угол наклона к основанию, то вершина пирамиды равно удалена от вершин основания.
При этом проекции боковых рёбер на основание равны высоте H пирамиды и равны радиусу R описанной около треугольника основания окружности.
R = abc/(4S) = 16*63*65/(4*504) = <span><span><span>
65520/</span><span>2016 = 32.5 см.
Получаем объём пирамиды:
V = (1/3)SoH = (1/3)504*32,5 = 5460 см</span></span></span>³.