Угол АDВ=DBC=34 (т.к. внутренние накрест лежащие)
Угол BDC=ADB=34 (т.к. по свойству ромба его диагонали являются биссектрисами) => угол CDA=ADB+BDC=34+34=68
Ответ: угол CDA=68
Будем считать, что условие я, всё-таки, понял правильно....
Смотрим рисунок:
В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ
Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60°
Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний:
ОС=ОВ=ВС=10 см
∠САВ=30°, значит гипотенуза АВ=2ВС=20 см
Меньшая средняя линия равна половине меньшей стороны:
ОМ=ВС/2=5 см
Док-во:
1 Т.к. CD - высота, то угол ADC = углу ACB
2 угол DAC - общий
По двум равным углам треугольники подобны.
Вот, а для нахождения АС надо решить систему:
x^2 + y^2 = 81
x^2 + z^2 = 16
y^2 + z^2 = 25
x = AC, y = BC, z = DC
Уравнения получены на основании т. Пифагора.
Складываем первое со вторым и подставляем третье, получаем x^2 = 36
Откуда х = 6
<span>Пусть
биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке M (см. рисунок 1)
<BAD = 30⁰,
AB = 10см, BC = 20 см.
Тогда < BMA = < MAD = < MAB = 15⁰.</span>Значит,
треугольник ABM — равнобедренный и BM = AB = 10 см, поэтому MC = 20-10=10 см.
Проведем биссектрисы BQ и DP тупых углов параллелограмма. Треугольник PCD - равнобедренный :<CDP=<ADP=<CPD
PC=CD=10 см, ВР=20-10=10.
Точка М- середина стороны ВС ( см. рисунок 1), но и точка Р- середина стороны ВС( см. рисунок 2), значит точки М и Р совпадают ( см. рисунок 3), точки N и Q совпадают.
Четырехугольник LMTN - прямоугольник, так как из треугольника АLB найдём угол <ALB=180⁰-15⁰-75⁰=90⁰, а смежный с ним <MNL=90⁰.
Аналогично находим и другие углы четырехугольника.
Прямоугольные треугольники ALB, АLN и BLM равны по гипотенузе 10 см и двум равным острым углам.
Из треугольника ВML находим ML=10·cos15⁰
Из треугольника АLN находим LТ=10·sin15⁰
Площадь прямоугольника LMTN равна произведению сторон
S=ML·LT=10·cos15⁰ ·10· sin 15⁰ = 50 ·sin30⁰ = 25 ( кв. см)