Угол АВК и угол за прямой АВ - накрест лежащие при АД и ВК секущей АВ, т.к. АД||ВК, то тот угол=угол АВК. Угол, равный углу АВК смежный с углом ВАД, т.е. АВК+ВАД=180 градусов, следовательно угол ВАД=180 - 80=100градусов.
Угол ДВК и АДВ - накрест лежащие при АД и ВК секущей ВД. Угол ДВК и АВД равны ( угол АВК делит биссектриса на ДВК и АВД), следовательно ДВК=АВД=80:2=40градусов.
Т.к. АД||ВК, то ДВК=АДВ=40 градусов.
Ответ:Угол В=Д=40 градусов, угол А=100 градусов.
Трапеция АВСД: ВС=14, диагонали АС=ВД=12√2
Если диагонали трапеции равны, то она — равнобедренная (АВ=СД)
<АВД=<АСД=90°
Опустим высоту СН на основание АД (она же является и высотой прямоугольного ΔАСД, опущенной из прямого угла на гипотенузу). Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований: АН=(АД+ВС)/2 и НД=(АД-ВС)/2
Из ΔАСД:
СН²=АН*НД=(АД+ВС)/2 *(АД-ВС)/2=(АД²-ВС²)/4=(АД²-196)/4
Из ΔАСН:
СН²=(АС²-АН²)=(АС²-(АД+ВС)²/4)=(4АС²-(АД²+2АД*ВС+ВС²))/4=(4*288-АД²-28АД-196)/4=(956-АД²-28АД)/4
Приравниваем:
(АД²-196)/4=(956-АД²-28АД)/4
АД²+14АД-576=0
D=196+2304=2500=50²
АД=(-14+50)/2=18
Ответ: 18
АК и DK - высоты данных тр-ов. Тогда угол AKD - искомая мера двугранного угла.
Для тр-ка ADK справедлива теорема Пифагора, т.к
АК^2 + DK^2 = AD^2 (4 + 4 = 8)
Значит угол AKD = 90 град
Ответ: 90 град.
<span>Так как пирамида треугольная, то рассмотрим её сечение по апофеме. Это прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.
Обозначим точку касания шаром боковой грани пирамиды буквой К.
По условию касания ОО</span>₁ = ОК.
По условию задания ДО / ОО₁ = 2 / 1, поэтому ДО / ОК = 2.
В треугольнике ДОК синус угла ОДК равен 1/2, поэтому этот угол равен 30°.
Угол при основании равен 90 - 30 = 60°.