Т.к. треугольник - тупоугольный, то высота AM перпендикулярна продолжению стороны CB. Угол ABM смежный с углом АВС, значит, угол ABM = 30°. Т.к. против угла в 30° в прямоугольной треугольнике лежит катет, равный половине гипотенузы, а AB - гипотенуза, то AB = 2AM = 2*12 = 24.
180°-111°=69°(Y)
Y=Z=69°
69°·2=138°
180°-138°=42°(X)
ОТВЕТ:Z;Y=69° X=42°
Центр окружности, описанной около прямоугольного треугольника - середина гипотенузы
ΔABC: <C=90°, AC=40 см, BС=42 см. AB=?
по теореме Пифагора: АВ²=АС²+ВС²
АВ²=40²+42², АВ²=3364. АВ=58 см
R=AB/2. R=29 см
Биссектриса делит угол пополам.
Значит, мы умножаем величину угла CBO на 2
28•2=56
Ответ: 56 градусов
Диаметр круга радиусом 2 см совпадает с высотой, проведенной из вершины прямогоугла равнобедренного треугольника.Найдите площадь части круга, расположенной вне треугольника.
Сделаю свой рисунок.
Обозначим точки пересечения окружности с треугольником М, К,точку касания с основанием треугольника - D.
<u><em>Соединим все эти точки</em></u>.
Высота треугольника, как медиана прямоугольного треугольника, равна половине основания.
ВD=AD=DC
∆ АDВ= ∆ ВDС.
МК - диаметр окружности и средняя линия ∆ АВС,т.к. проходит через центр окружности.
МК=2 см
АМ=МВ, ВК=КС, МD=DK
МВКD - квадрат, <u><em>диагонали которого равны диаметру окружности 2 см</em></u>.
<em>Площадь квадрата равна половине произведения его диагоналей.</em>
<em></em>
S МВКD=2*2:2=2 см²
<u>S окружности</u> = πr²=4π
Площадь <u><em>четырех сегментов круга вне</em></u> квадрата МВКD равна
S окружности минус S МВКD =4π-2
Площадь сегментов вне треугольника равна половине площади четырех сегментов вне квадрата МВКD и равна:
<em>(4π-2):2=(2π-1 )см²</em>