Угол 4 = углу 2 т.к вертикальные.
Пусть этот треугольник АВС с основанием АС.
АВ=ВС,
Высота ВН=медиана и делит основание АС пополам.
АН=30 см
Треугольник АВН - прямоугольный,
Так как в получившемся прямоугольном треугольнике катеты относятся как 3:4, то с гипотенузой АВ - боковой стороной равнобедренного треугольника - они составят <u>египетский треугольник</u>, отношение сторон которого 3:4:5. Гипотенуза равна 50. (можно проверить по т. Пифагора).
Проведем высоту НМ к боковой стороне - гипотенузе треугольника АВН.
<em> Высота прямоугольного треугольника, проведенная из прямого угла к гипотенузе, делит его на подобные треугольники. </em>
Δ ВМН ≈ Δ АВН
.АН:МН=АВ:ВН
30:МН=50:40
50 МН=1200
МН=24 см
Смотри по фото.
Здесь даже можно посчитать.
У РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА БОКОВЫЕ СТОРОНЫ ВСЕГДА РАВНЫ.
Если одна боковая сторона рана 34см , то следовательно другая сторона, равна 34см.
А остальное смотри по фото.
Диагонали ромба равны 16 и 30 сантиметров. Найти периметр ромба.
Дано: АВСД-ромб АС и ВД-диагонали АС=16 см ВД=30 см
Найти: Р-периметр АВСД
Решение:1) АС пересекается с ВД в точке О Треугольник АОВ-прямоугольный. т.к. известно, что диагонали ромба взаимно перпендикулярны.
По теореме Пифагора найдём сторону АВ.АВ=sqrt{OA^2 + OB^2}=sqrt{8^2+15^2}=sqrt{289}=17(см)
2)АВСД-ромб, следовательно все его стороны равны
Периметр Р=4*АВ=4*17=68(см) Ответ: 68 см
Из точки (вершины) В проводишь медиану, допустим ВМ
Т.к. треугольник равнобедренный, то АМ=МС=40:2=20
Находим ВМ по теореме Пифагора:
ВМ^2=АВ^2-АМ^2=29^2-20^2=841-400=441
ВМ=✓441=21
Площадь равна
S=1/2*a*h=1/2*AC*BM=1/2*40*21=420