Если ∠А = 30°, то тупой угол параллелограмма ∠В = 180° - 30° - 150°
У параллелограмма две диагонали. Найдём их по теореме косинусов
Меньшая диагональ - d
d² = а² + в² - 2а·в·сos30° = 9 + 4 - 2·3·2·0.5√3 = 13 - 6√3 ≈ 2.608
d ≈ 1.6
Большая диагональ D
D = а² + в² - 2а·в·сos150° = 9 + 4 + 2·3·2·0.5√3 ≈ 23.392
D ≈ 4.8
Находим по т. Пифагора гипотенузу прямоугольного треугольника:
√(3²+4²)=5 см;
периметр прямоугольного треугольника - 3+4+5=12 см;
находим коэффициент подобия треугольников - 36/12=3;
стороны треугольников относятся как 3:4:5;
к=3, значит стороны треугольника равны:
3*3=9 см;
3*4=12 см;
3*5=15 см.
Отрезок это прямая у которого есть начало и конец
а луч это прямая у которой есть начало но нет конца