Треугольник АВС составлены из трёх точек
ЧЕТЫРЕХУГОЛЬНИК ТРЕУГОЛЬНИКОМ БЫТЬ НЕ МОЖЕТ......................
∠A2KB2 = ∠A1KB1 (вертикальные)
∠KB1A1 = ∠KB2A2 (как накрест лежащие)
∠KA1B1 = ∠KA2B2 (как накрест лежащие) ⇒
ΔA2KB2 ≈ ΔA1KB1 (по трем углам)
a)Около квадрата всегда можно описать, в квадрат всегда можно вписать окружность. Почему? /если сумма противоположных сторон четырехугольника равна сумме других противоположных сторон, то в него можно вписать окружность/, а если суммы противоположных углов четырехугольника равны, около него можно описать окружность. Квадрат обладает и тем, и другим свойством.
б)Около любого треугольника можно описать окружность, центр ее находится в точке пересечения серединных перпендикуляров, в любой треугольник можно вписать окружность, центр ее лежит на точке пересечения биссектрис внутренних углов треугольника.
ИСХОДЯ ИЗ ВЫШЕСКАЗАННОГО
в) В ромб можно вписать окружность, а описать нельзя
г)Около параллелограмма нельзя описать, или вписать в него окружность;
д) около прямоугольника можно описать окружность, центр ее совпадает с точкой пересечения диагоналей. Вписать окружность в прямоугольник нельзя
е) Около равнобедренной трапеции можно описать окружность, т.к. суммы противоположных углов равны . В равнобокую трапецию можно вписать окружность, только в случае выполнения условия, если сумма оснований равна сумме боковых сторон трапеции.