1) 3
2) 1
3) 4
4) 1
B1) 6см
C1) Треугольник ABC, Высота BH. Угол ABC=120 градусов, в равнобедренном треугольнике высота, проведенная к основанию является биссектрисой и медианой. HBC=60 градусов
<span>Рассмотрим треугольник CBH. BC=16 , угол BHC=90 , значит угол BCH=30 градусов. Катет лежащий против угла в 30 градусов равен половине гипотенузы, значит высота BH= 16/2=8
</span>
АС найдём по теореме косинусов
АС² = АВ²+ВС²-2*АВ*ВС*cos ∠B = 81*2+36-2*9*√2*6*1/√2 = 198-108 = 90
АС = √90 = 3√10
Угол найдём А так же по теореме косинусов
BC² = АВ²+AС²-2*АВ*AС*cos ∠A
36 = 162 + 90 - 2*9√2*3√10*cos ∠A
36 = 252 - 108*√5*cos ∠A
54 = 27√5*cos ∠A
2 = √5*cos ∠A
cos ∠A = 2/√5
∠A = arccos (2/√5)
∠B = 180 - 45 - arccos (2/√5)
АБС - равнобедренный, так как углы при основании равны
угол Б - 112 градусов, а по теореме о сумме углов в треугольнике мы знаем, что сумма углов равна 180 градусам, из чего следует, что углы
А+С=180-112=68 градусам
так как углы при основании равны, из этого следует, что А=С=68:2=34 градусам
углы в треугольнике найдены
Теперь найдем любой внешний угол, пусть это будет угол при основании АС угол БАК
ПО теореме о внешнем угле мы знаем,что внешний угол равен сумме двух других углов, не смежных с ним, из чего следует, что угол БАК=34+112=146 градусам