Задание №
7:
На стороне AB равностороннего треугольника ABC взята точка D
так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту
треугольника, проведенную из вершины C.
РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных
расстояний m, другое – n. Расстояния – это высоты.
Находим площади треугольников:
Теперь их
суммируем:
В левой части
полная площадь ABC, правую можно периписать так:
Где h - высота из вершины C, равна
сумме расстояний = 16 см
ОТВЕТ: <span>16
см</span>
2. Прямоугольные треугольники абс и абд равнобедренные, поэтому аб, сб и бд равные отрезки. Тогда треугольник сбд равен треугольн кам абс и абд по трем сторонам, поэтому в нем угол сбд прямой.
4. Треугольник абс прямоугольный и равнобедренный, поэтому его катеты бс и ба имеют длину 5. Треугольник абд прямоугольный с известной гипотенузой в 12 и одним из катетов в 5.
По теореме Пифагора квадрат катета бд равен 169-25=144. Значит, длина бд равна 12.
6. Прямоугольные треугольники абс и абд равны по кстету и острому углу. Их гипотенузы вдвое больше лежащего против угла в 30 катета аб и равны 4. Тогда треугольник асд равнобедренный с углом в 60, то есть равносторонний, то есть все его стороны равны, значит, сд равна 4.
АД⊥АВС ⇒ АД⊥ВС.
ВС⊥АС и ВС⊥АД ⇒ ВС⊥АСД ⇒ ВС⊥СД, значит ΔВСД - прямоугольный.
Доказано.
Проведём АК⊥СД и КМ║ВС.
ВС⊥СД и КМ║ВС ⇒ КМ⊥СД, одновременно АК⊥СД. АК∈АСД, КМ∈ВСД, значит АСД⊥ВСД.
Доказано.
СД⊥ВС ⇒СД-?
В тр-ке АВС АС²=АВ²-ВС²=10²-6²=64
В тр-ке АСД СД²=АС²+АД²=64+15²=289,
СД=17 - это ответ.
12. средняя линия треугольника равна <u>половине</u> стороны, к которой параллельна... ответ 2.5
9. зная диагональ и сторону, по т.Пифагора можно найти вторую сторону прямоугольника...
х² = 50² - 48² = (50-48)(50+48) = 2*98 = 4*49 = (2*7)²
Sпрямоугольника = произведению смежных сторон = 48*14 = 672
10. ∠ВАО=∠АВО=59° т.к. АО=ВО ---это радиусы окружности
---> ∠AOB=180° - 2*59° = 62°
∠АСВ = 62° / 2 = 31°
вписанный в окружность угол, равен половине центрального угла, опирающегося на ту же дугу...