Поскольку вписанная окружность в равнобедренный треугольник делит высоту на отрезки 5 и 4 см считая от вершины, то диаметр окружности будет принадлежать высоте треугольника и будет равен 4 см.
А значит радиус равен 2 см.
r=
=2
Высота 5+4=9 см
S=1/2*h*b=1/2*9*b=9/2*b
S=r*p, где p=(2a+b)/2=a+b/2
S=2*(a+b/2)=2a+b
2a+b=9/2b
4a+2b=9b
4a=7b
a=1.75b
r=
b√5/6=2
b√5=12
b=12/√5
a=12√5*1.75=21√5
P=2*21*√5+12√5=54√5
b = 2a · sin α/2 - третья сторона треугольника, лежащего в основании пирамиды
S = 0.5 a · a · sin α = 0.5a²·sinα - площадь основания
Проекцией бокового ребра на основание является радиус окружности, описанной вокруг основания
R = a · a · b/(4S) = a · a · 2a · sin α/2 : (4 · 0.5a²·sinα) = а/(2cos α/2)
h = √(a² - R²) = √(a² - a²/(4cos² α/2)) = a √(1 - 1/(4cos² α/2)) - высота пирамиды
Объём пирамиды равен V = 1/3 · S · h =
= 1/3 · 0.5a² · sin α · a√(1 - 1/(4cos² α/2)) =
= a³ · 2 sin α/2 · cos α/2 · √(4cos² α/2 - 1) / (6 · 2 cos α/2) =
= a³/6 · sin α/2 · √(4cos² α/2 - 1)