1) Сумма углов треугольника = 180 градусов
2) 180-90=90 сумма величин двух острых углов, т.к. один из углов прямой, т.е. =90 градусов
3) x+(x+24)=90
4) 2x=66
5) x=33
6) x+24=33+24=57
Ответ: первый угол равен 33 градуса, второй — 57 градусов.
Я пишу решение "вслепую", так что проверяйте потом.
Пусть O1 - центр окружности радиуса 4 (на ней пусть лежит точка A); O2 - центр второй окружности.
Тут кругом прямые углы. Логичнее начать с пункта в)
Отрезки O1A и O2B оба перпендикулярны AB => O1A II O2B;
=> ∠AO1P + ∠BO2P = 180°; Это центральные углы дуг AP и BP;
=> ∠PAB + ∠PBA = 90°; => ∠APB = 90°;
б) O1K - биссектриса ∠AKP; O2K = биссектриса ∠BKP;
Половины этих углов в сумме составляют ∠O1KO2; то есть
∠O1KO2 = 90°;
PK - высота к гипотенузе в прямоугольном треугольнике O1KO2;
и она делит гипотенузу на отрезки 4 и 11; поэтому PK^2 = 4*11 = 44;
PK = 2√11
а) AB найти проще всего. Из O1 надо провести прямую перпендикулярно O2B (и параллельно AB); получается прямоугольный треугольник с гипотенузой 4 + 11 =15; и катетом 11 - 4 = 7; откуда AB^2 = 15^2 - 7^2 = 11*16;
AB = 4√11;
PK = AB/2; что совсем не удивительно (я тут нарочно схитрил, чтобы подольше понабирать решение.)
Дело в том, что PK - медиана в прямоугольном треугольнике APB, то есть PK = AB/2; сразу без всяких вычислений.
Но зато ответ получен двумя разными способами. Можно выбирать, что считать и каким способом, PK или AB...
Если один угол 50 градусов, а у равнобедренного треугольника углы при основании равны, то два других угла будет равны (180-50):2=65, а по свойству "внешний угол равен сумме двум углам не смежных с ним", а значит 65+50=115 градусов
Ответ:115 градусов
Периметр Δ= катет + катет + гипотенуза.
Известно, что гипотенуза = а, радиус вписанной окр-ти = r.
Из формулы
r=(b+c-a) : 2, где b, c - катеты, a - гипотенуза,
находим (b+c).
(b+c) = 2r+a.
Тогда периметр Δ= b+c+a = 2r+a+a = 2r+2a = 2(r+a).