<span>прямой AB перпендикулярные <span>плоскости</span>: (CBB1), (DAA1)</span>
SinA=BC/AB
AB=BC/sinA=8/0.4=20
ответ 20
Ответ а 5см10сму30сантимет
Построили все хорошо.
Диагонали сечения перпендикулярны. Поэтому его площадь можно найти, как половину произведения диагоналей.
Пусть 0 - точка пересечения ТС и высоты пирамиды (назовем ее МН). В треугольнике СМА точка 0 - точка пересечения медиан (треугольник равнобедренный, значит высота пирамиды - его медиана, и СТ тоже медиана).
Следовательно, MO / OH = 2/1 ⇒MO/MH = 2/3
ΔKMP подобен ΔDMB с коэффициентом 2/3. BD = 3√2 ⇒KP = 2√2
Из ΔAMH: cos∠A = AH / AM = √2/4
Из ΔATC по теореме косинусов:
TC² = AT² + AC² - 2AT·TC·cos∠A = 9 + 18 - 2·3·3√2·√2/4 = 18
TC = 3√2
Sсеч. = 1/2 KP·TC = 1/2·2√2·3√2 = 6