Сначала нужно найти середину диагонали AB:
x=(x1+x2)/2 (-7-1)/2=-4
y=(y1+y2)/2 (7+1)/2=4 M(4;-4) координаты точки M
точка M(4;-4) будет точкой пересечения диагоналей(диагонали делятся пополам)
Также точка М является серединой диагонали CD, где координаты D неизвестны
D(7;-10) - координаты точки D
Угол BCA равен углу BAC , сумма всех углов ровна 360градусов 120 плюс 120 равно 240, 360 минус 240 равно 120.все стороны равны 12, потом ищеш площадь треугольника и умножаешь на 2 получается, 124,8. Площадь ровна 124,8.
Заметим, что количество ребер в пирамиде равно удвоенному количеству вершин многоугольника, лежащего в основании. Тем самым, количество вершин у основания 6(12/2), значит в основании шестиугольник.
Что за "a"? могу помочь с первым и вторым, но третье не понятно
1) первый признак равенства треугольников. Если две стороны и угол между ними одного треуг. равны соотвественно двум сторонам и углу между ними другого треугольника то такие треуг. равны.
2) Медианой треугольника называется отрезок соед. любую вершину треугольника с серединой противоположной стороны. Бессектриса это линия, делящая угол пополам. Высоты это перпендикуляр опущенный из любой вершины треугольника на противоположную сторону.
3) В равнобедренном треугольнике бисскетриса проведенная к основанию, является бисскетрисой и высотой.
4) В равнобедренном треугольнике углы по оснавании равны. 2) Медиана проведенная к основанию является бисскетрисой и высотой. 3) Бессектриса проведенная к основанию является Медианой и высотой. 4) Высота проведенная к основанию является Медианой и бисскетрисой. 5)Нера́венство треуго́льника в геометрии, функциональном анализе и смежных дисциплинах — это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда не превосходит сумму длин двух его других сторон. 6) Сумма треугольников 180*
7)Катет прямоугольного треугольника, лежащий против угла в 300, равен половине гипотенузы. Признаки равенства: Теорема. ... Два прямоугольных треугольника равны, если острый угол и сторона одного равны острому углу и стороне другого.
8)Теорема, обратная теореме Пифагора Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
9)Признак равенства треугольников по двум сторонам и углу между ними . Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны.