H=a/5
S=a*h=a*a/5=45
a^2=225
a=+-15(- не берем)
сторона a= 15, h=a/5=3
вторая сторона b=(46-30)/2=8
Высоту можно найти с помощью<u> классической формулы площади треугольника,</u> не только прямоугольного.
Из формулы
<em>S=hc:2</em>, где р высота, с - гипотенуза, к которой она проведена, выразим высоту.
<em>h=2S:c</em>
2S=ab, т.е. произведению катетов.
<em> с=√(а²+b²)</em>=√(576+49)=25
2S=7*24=168
<em>h</em>=168:25=<em>6,72</em> <span>
</span>
3^x2-15x<_0
x(3x-15)<_0
x<_0 3x-15<_0
3x<_15
x<_5
x^2+14x+49>0
D=196-4*49=0
x=7
Если <span>точка N равно удалена от каждой вершины треугольника, то это вершина конуса, в основание которого (круг) вписан заданный треугольник.
Проекция </span><span>точки N на основание - центр О описанной вокруг треугольника окружности радиуса R.
R = a/(2sinA). Находим высоту h на основание треугольника.
h = </span>√(3²-(4/2)²) = √(9-4) = √5.
sinA = h/AB = √5/3.
Тогда R = 3/(2*(√5/3) = 9/(2√5) = 9√5/(2√5*√5) = 0,9√5.
<span>Расстояние от точки N до плоскости треугольника - это отрезок NO.
</span><span>NO = </span>√(2,1²-R²) = √(4,41-0,81*5) = √(4,41-4,05) = √0,36 = 0,6.