В ∆DBC sinC = BD/BC = 15/25 = 3/5 = 0,6.
По обобщённой теореме синусов:
2R = BC/sinA
2•32,5 = 25/sinA
65 = 25/sinA
sinA = 25/65 = 5/13.
sinA = BD/AB
5/13 = 15/AB => AB = 15/5•13 = 39
По теореме Пифагора:
AD = √AB² - BD² = √39² - 15² = √1521 - 225 = √1296 = 36.
В ∆BDC по теореме Пифагора:
DC = √BC² - BD² = √25² - 15² = √625 - 225 = √400 = 20.
AC = AD + DC = 36 + 20 = 56.
Ответ: 56, 39.
Доброго времени суток! Решение данного задания предоставлено на листе А4 чёрными чернилами, надеюсь моя помощь поможет Вам правильно усвоить данный предмет.
С уважением, SkOrPiOnUs!
Все просто bn=12 ab=12+3 тк bh+nh=bc cos b = bn/ab значит cos b =0.8
Ответ:
Объяснение:
1. Построить угол, равный данному (есть такая задача в учебнике, как это сделать) с вершиной А.
2. Циркулем отметить расстояние, равное катету и провести прямую на этом расстоянии, параллельную нижнему лучу угла. Она пересечет верхний луч в точке В.
3. Опустить перпендикуляр из этой точки на нижний луч. Будет точка С.
4. Треугольник АВС построен.