Параллелограм
каждые 2 противоположные стороны/углы равны
Квадрат
все углы прямые
диагонали равны, перпендикулярные, бисектрисы
Противоположные стороны параллелограмма равны, поэтому
по теореме косинусов можно сразу найти косинус угла СВD в треугольнике CBD:
Cos(CBD)=(BC²+BD²-CD²)/(2*BC*BD) или в нашем случае:
Cos(CBD)=(25+36-16)/60=3/4.
Ответ: <CBD=arccos(3/4) или ≈41,4°.
Синус угла CBD равен sin(CBD)=√(1-9/16)=√7/4.
Диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна Sabcd=2*Sbcd.
Scbd=(1/2)BC*BD*Sin(CBD) или Scbd=15√7/4.
Sabcd=2*15√7/4=15√7/2=7,5√7.
Ответ: Sabcd=7,5√7.
Для проверки найдем по теореме косинусов в треугольнике АВD косинус угла А:
CosA=(16+25-36)/40=1/8.
SinA=√(1-1/64)=(√63)/8=(3√7)/8.
Тогда площадь параллелограмма равна
Sabcd=AB*AD*SinA или Sabcd=(20*3√7)/8=15√7/2=7,5√7.
Ответ совпал с полученным ранее значением.
Розв'язання завдання додаю., 5 см. Можна використовувати т. Пiфагора, але у 10 класi вже можна використовувати формули, якi полегшують розв' язання.
Ромб — это четырёхугольник, у которого все стороны равны. Ромб с прямыми углами называется квадратом.
Площадь ромба равна половине произведения его диагоналей:
S = (AC · BD) / 2.
Доказательство.
Пусть АВСD — ромб, АС и BD — диагонали.
Тогда SABCD = SABC + SACD = (AC · BO) / 2 + (AC · DO) / 2 = AC(BO + DO) / 2 = (AC · BD) / 2.
Что и требовалось доказать.
Так же площадь ромба можно найти с помощью следующих формул:
S = a · H, где a — сторона, H — высота ромба.
S = a2 · sin α, где α — угол между сторонами, a — сторона ромба.
S = 4r2 / sin α, где r — радиус вписанной окружности, α — угол между сторонами.
1)периметр треугольника 5+3+7=15 см. Отношение периметров подобных треугольников равно коэффициенту подобия. Находим коэффициент подобия k=105/15=7. Значит стороны подобного треугольника будут 35, 21, 49.
2) Находим коэффициент подобия k=35/7=5. Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Значит площадь второго треугольника равна 27*5^2=675.