Sin угла=v(1-0,6^2)=v(1-0,36)=v0,64=0,8
высота трапеции=0,8*45=36
площадь=(31+87)/2*36=2124
Пусть дана окружность радиуса R с центром в точке О и внутри её точка <span>N.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка </span>N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки <span>N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания А</span>N:В<span>N = 3:4. Примем коэффициент пропорциональности за х.
Тогда А</span>N = 3х, а В<span>N = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и Оh</span><span>N.
</span>Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x²<span> = d²-0,25x².
Приведём подобные: 12x</span>² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = <span>√(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
Ответ: от отрезка ON откладываем найденный угол </span><span>AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.</span>
Дано:AC = 20 см;
BD = h = 5 см;
Найти:
S - ?
Решение:
Т.к. AC = 20 см и h = 5 см, то площадь треугольника можно найти по формуле.
Где a - сторона треугольника, h - высота проведенная к стороне.
см²
Ответ: 50 см².
медиана делит сторону пополам, а в равностороннем треугольнике все стороны равны
Ответ: 16,16,16
1) Так как высота у треугольников АВД и АСД одинакова, то их площади относятся как боковые стороны (на основе свойства биссектрисы: ВД:СД = 4:6).
Тогда площадь АСД = (6/4)*12 = (3/2)*12 = 18 см².
2) Обозначим MN = x.
Используем формулу площади треугольника по двум сторонам и углу между ними.
S(ABC) (1/2)*5*6*sin α 3
---------- = ----------------- = ----
S(MNK) (1/2)*7*x*sin α 7.
Отсюда получаем (по свойству пропорции):
15*7 = 3,5х*3
х = 15*7/(3,5*3) = 35/3,5 = 10.