1)ответ: 12а3-108а2+84а
2)15с3+10ас2-5а2с
3)ответ: 6а5+1,5а4b-3a3b2
4)ответ: 1,5у3-3,6у3-12у
Находим первообразную и решаем интеграл
§-знак интеграла
§(2)(0)x^3=x^4/4|(2)(0)=2^4/4-0^4/4=4
Пусть xo - корень этого уравнения, тогда -xo также корень. Проверка:
Получилось тоже самое уравнение. Значит:
Подставим это значение в уравнение:
Не торопимся записывать эти значения в ответ. Обратите внимание, что это только <u>претенденты</u> на ответ. Теперь каждое значение нужно аккуратно подставить в изначальное уравнение, и проверить, на количество корней. Те значение. которые будут давать больше 1 корня, мы в ответ записывать не будем(по условию).
Решаем это уравнение с модулями на промежутках.
Заметим, что это ситуация аналогична пункту 2, решений тут нет.
Теперь складываем все полученные корни и того: 1 корень. Значит это значение пойдет в ответ.
Это значение не подходит, так как тут целых 3 корня.
Заметим, что это уравнение копия уравнения, при a=3, значит тут будет всего 1 корень, и это значение нм подходит.
Ответ: a=3,a=7.