Трапеция АВСД, АС-дигаональ, уголА=уголВ=90, треугольник АСД равносторонний, АС=СД=АД=10 , все углы=60., уголВАС=уголА-уголСАД=90-60=30, треугольник АВС прямоугольный, ВС=1/2АС=10/2=5, МН-средняя линия=(ВС+АД)/2=(5+10)/2=7,5
ctg^2-cos^2-ctg^2*cos^2==мы знаем, что
<span>Пусть имеем трапецию ABCD, в которой AC и BD диагонали и соответственно равны по условию 9 и 12</span>
<span>S=lh, где l- средняя линия трапеции, а h-высота</span>
<span>Проведем через вершину С прямую, параллельную диагонали ВD. Пусть Е - точка пересечения этой прямой с продолжением АD. ВСЕD - параллелограмм, так как BC||DE и BD||CE.</span>
<span> СЕ = ВD = 12. </span>
<span>Рассмотрим треугольник АСЕ, так как в нем</span>
AE=AD+DE=AD+BC=2l=2*7,5=15
и
(AE)^2=(AC)^2+(CE)^2
15^2=12^2+9^2
225=144+81
225=225
то есть треугольник прямоугольный и угол ACE=90 градусов
Проведем из вершины C на AE высоту CK
<span>Тогда CK= АС*СЕ/АЕ </span>
<span>CK=h = 9*12/15 = 7,2. </span>
<span> то есть</span>
S=lh=7,5*7,2=54
<span>Ответ. 54 </span>