вот с чертежом не могу ,а так решу
1)чертишь равнобедренную трапецию АВСД где АВ и СД боковые стороны
а ВС и АД основания
2) опускаешь из В и С перпендикуляры ВК и СН на АД ,ВК=СН
3) S=1/2(13+23)*ВК=18*ВК S=216 => ВК=216/18=12
4) Треуг.АВК=СНД как прямоуг.по гипотенузе и катету (АВ=СД ,ВК=СН)
=>АК=НД=5(АД-ВС=23-13=10)
5) АВ^2=BK^2+AK^2=12^2+5^2=144+25=169 AB=13
6) P=13*2+13+23=62
1.3.5 верные утверждения.
В основании правильной четырехугольной пирамиды лежит квадрат. Высота пирамиды опущена из вершины в точку пересечения диагоналей основания. Высота (h) пирамиды является катетом прямоугольного треугольника, в котором гипотенуза (c) - боковое ребро пирамиды, а половина диагонали основания пирамиды - второй катет (b), прилежащий углу 30 градусов.
Длина диагонали квадрата равна a * √2, где а - сторона квадрата основания пирамиды
Длина катета (b), прилежащего углу 30 град = половине диагонали основания = а * √2 / 2 = 6 * √2 / 2 = 3√2 см
Высота (h) пирамиды (она же катет, противолежащий углу 30 градусов) может быть найдена по известному катету и прилежащему ему углу
h = b * tg30° = 3√2 * √3 / 3 = √6 ≈ 2,5 см
Палестра частная гимнастическая школа в Древней Греции.