Соответственно, 9 и 27. В сумме оба числа дают 36, при этом 27 больше 9 ровно в 3 раза.
V( пирамиды SABC)=(1/3)·S(ΔABC)·H
По условию (1/3)·S(ΔABC)·H=210, значит S(ΔABC)·H=630.
Пусть сечение - треугольник А₁В₁С₁.
Из подобия
Так как SA₁:SA=3:7 , то h:H=3:7, где h- высота пирамиды SA₁B₁C₁
и
А₁В₁:АВ=3:7
В₁С₁:ВС=3:7
А₁С₁:АС=3:7
а площади подобных треугольников относятся как квадраты соответствующих сторон.
S( Δ А₁В₁С₁):S( Δ АВС)=9:49
Так как
S(Δ А₁В₁С₁)=90, то S(Δ АВС)=90·49:9=490
Из равенства S(ΔABC)·H=630 находим
Н=630:490
Н=9/7
h:H=3:7
h=27/49
О т в е т. 27/49.
<span>Обозначим вершины треугольника А,В,D. </span>
Конечно же 2 А
Откройте признаки паралелограма!Учите теорию!
Трапеция АВСД: ВС = 8см, АД = 12см. угол А = углу Д = 45гр.
Опустим высоты ВЕ и СР из вершин В и С на основание.
Получим основание, состоящее из трёх отрезков: АЕ = РД и ЕР = ВС = 8.
Если из большего основания вычесть меньшее, то останется 12 - 8 = 4см.
Сумма отрезков АЕ = РД ранв 4 см, тогда каждый отрезок АЕ = РД = 2см.
В ΔАВЕ угол ВЕА = 90гр (ВЕ - высота), А = 45 гр., то угол АВЕ = 45гр. и ΔАВЕ - равнобедренный. ВЕ = АЕ = 2см (нашли высоту)
А гипотенуза АВ = √(АЕ² + ВЕ²) = √8 = 2√2 см
Ответ: высота трапеции равна 2см, боковая сторона трапеции равна 2√2 см.