Рассмотрим получившиеся треугольники AOD и АО1В. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
<AOD=<AO1B=20° по условию;
< A - общий
Значит, <ADO=<ABO1 (это углы B и D в четырехугольнике)
Пусть общий для обоих треугольников AOD и АО1В угол А будет х. Выразим неизвестные углы ADO и ABO1, зная, что сумма углов треугольника равна 180°:
<ADO=<ABO1=180-(<A+20)=160-<A=160-x (<D=<B=160-x)
Рассмотрим четырехугольник ABCD. Зная сумму его углов, выразим угол С:<C=360-(<A+<B+<D)=360-(x+160-x+160-x)=40+х.
Т.е.<span><C=40+<A (поскольку за х мы принимали угол А). Таким образом, мы видим, что разница между углами С и А равна 40 градусов.</span>
Попробую, хотя я не люблю геометрию.
1) Длины дуг относятся как 3 : 5, пусть их длины равны 3x и 5x.
Длина окружности C = 2pi*R = 8x
x = pi/4*R
L(AB) = pi*R*a/180 (где а - это угол дуги) = 3x = 3pi/4*R
a = AOB = 3/4*180 = 135°
L(BMA) = pi*R*b/180 = 5x = 5pi/4*R
b = 5/4*180 = 225°
Угол OBC = 90° (радиус всегда перпендикулярен к касательной).
Треугольник AOB - равнобедренный, поэтому
угол OBA = (180° - 135°)/2 = 45°/2 = 22,5°
Угол ABC = 90° - 22,5° = 67,5°
2) Окружность состоит из частей длиной 2, 3, 9 и 6.
Я ее изобразил на 1 рисунке. Требуется найти углы ANB и BMC.
Длина окр. C = 2pi*R = (2+3+9+6)*x = 20x
x = pi/10*R
Длины дуг: AB = 2x = 2pi/10*R; BC = 3x = 3pi/10*R; CD = 9x = 9pi/10*R;
DA = 6x = 6pi/10*R
Углы: AOB = 2pi/10 = 36°; BOC = 3pi/10 = 54°; COD = 9pi/10 = 162°;
DOA = 6pi/10 = 108° .
Заметим, что AOC = AOB + BOC = 36° + 54° = 90°
В треугольнике ANB углы NAB + ABN + ANB = 180°
Треугольники внутри круга все равнобедренные, поэтому:
OAB = OBA = (180° - AOB)/2 = (180° - 36°)/2 = 72°
OAD = ODA = (180° - DOA)/2 = (180° - 108°)/2 = 36°
ODC = OCD = (180° - COD)/2 = (180° - 162°)/2 = 9°
OCB = OBC = (180° - BOC)/2 = (180° - 54°)/2 = 63°
Угол NAD = 180° = NAB + OAB + OAD
NAB = 180° - OAB - OAD = 180° - 72° - 36° = 72°
Угол NBC = 180° = NBA + OBA + OBC
NBA = 180° - OBA - OBC = 180° - 72° - 63° = 45°
Угол MCD = 180° = MCB + OCB + OCD
MCB = 180° - OCB - OCD = 180° - 63° - 9° = 108°
Угол MBC = NBA = 45°, потому что это вертикальные углы.
Наконец, добрались до главных углов:
CMB = 180° - MBC - MCB = 180° - 45° - 108° = 27°
ANB = 180° - NBA - NAB = 180° - 45° - 72° = 63°
Главное - внимательно следить за углами, что с чем складывается.
3) Эту задачу я изобразил на рисунке 2.
Она намного проще.
Угол OAC = OAD = 90° (касательная перпендикулярна к радиусу)
Треугольник AOB - равносторонний (AB = AO = OB = R)
Угол OAB = 60°
Угол между хордой и касательной
BAD = OAD - OAB = 90° - 60° = 30°
1) Так как высота у треугольников АВД и АСД одинакова, то их площади относятся как боковые стороны (на основе свойства биссектрисы: ВД:СД = 4:6).
Тогда площадь АСД = (6/4)*12 = (3/2)*12 = 18 см².
2) Обозначим MN = x.
Используем формулу площади треугольника по двум сторонам и углу между ними.
S(ABC) (1/2)*5*6*sin α 3
---------- = ----------------- = ----
S(MNK) (1/2)*7*x*sin α 7.
Отсюда получаем (по свойству пропорции):
15*7 = 3,5х*3
х = 15*7/(3,5*3) = 35/3,5 = 10.
Гіпотенуза прямокутного трикутника є діаметром
Гіпотенуза = √24*24+18*18=30
Радіус Круга= 30/2=15
Площа Круга=π*15*15=225π
т. к трапеция прямоугольная, то два угла по 90 градусов
215-90=125( по условию)
180-125=55( прилежащие к одной стороне в сумме =180)
Ответ 55