Вектор AB = (0-3; -7-(-1); 3-0) = (-3; -6; 3);
вектор AD = (3-3; 2-(-1); 6-0) = (0; 3; 6);
вектор AC = (-2-3; 1-(-1); -1-0) = (-5; 2; -1);
(вектор АВ)*(вектор AD) = (-3; -6; 3)*(0; 3; 6) = -3*0 + (-6)*3 + 3*6 = 0;
То есть векторы AB и AD перпендикулярны, это значит, что
<BAD = 90°.
(вектор AB)*(вектор AC) = (-3; -6; 3)*(-5; 2; -1) = (-3)*(-5) + (-6)*2 + 3*(-1) =
= 15 - 12 - 3 = 15 - 15 = 0;
То есть векторы AB и AC перпендикулярны, а это значит, что
<BAC = 90°.
Таким образом получается, что прямая AB перпендикулярна двум различным прямым AD и AC, которые лежат в плоскости ADC. Поэтому по признаку перпендикулярности прямой и плоскости получаем, что
AB ⊥ пл. ADC, что означает, что AB перпедикулярна любой прямой, лежащей в плоскости ADC, то есть что искомый угол = 90°.
Дано: Δ АВС - равнобедренный, АВ=ВС, ∠В=168°, АД - биссектриса.
Найти ∠АДС.
Решение: ∠А+∠С=180-168=12°
∠А=∠С=12:2=6°
Рассмотрим Δ АДС.
∠ДАС=1\2∠А=3°
∠С=12°
∠АДС=180-(3+12)=165°
Ответ: 165°
1) Пусть x-коэффициент пропорциональности,тогда AB =BC =3x,AC = 4x.
2) Sabc = AC*BD/2(BD-высота). SABC =4x*20/2=40x.
3) Pabc = 4x +3x +3x =10x следовательно(полупериметр =5x).
4) r=S/p;
r =40x/5x = 8x
Ответ: 8
Дано:
АВСД - р/б трап
ВС<AD - основания
ВС=6 см
АД=16 см
АВ=СД=13 см
S - ?
Решение:
1) ВН - высота трапеции; АН=(16-6):2= 5 см (так как трапеция по усл р/б)
2) треуг АВН прямоугольный уг Н=90*; По т Пифагора ВН^2=АВ^2-AH^2
BH=12 см.
3) S(ABCD)= (BC+AD)/2 * BH
<span> S=(16+6)/2 * 12 = </span><span>132 кв см</span>
Треугольник АВМ равнобедренный, следовательно в нём угол ВМА равен углу ВАМ. Угол ВМА равен углу МАД (накрестлежащие при параллельных прямых ВС и АД и секущей АМ) => угол ВАМ = углу МАД, а значит АМ биссектриса угла А. Что и требовалось доказать.