он будет тупой............
CE=ED =2√2.
Bf=CE. AF=BF/tg60=2√2/√3. AD=3+2√2+2√2/√3. S=CE*(bc+ad)/2
Зависимость стороны правильного многоугольника от радиусов вписанной и описанной окружностости.
Дано: правильный n-укольник
Доказать:аn=2R*sin(180/n), R-радиус описанной окружности
аn =2r*tg(180/n), r-радиус вписанной окруждности
Доказательство:
О-центр описанной окружности
ОА1=ОА2=R , т.к. радиусы описанной окружности
OH=r, радиус вписанной оркужности
В треуuольнике А1ОА2 угол А1ОА2=360/n
угол HOА2 =β=180/n
HА2=0,5А1А2 , следовательно, аn=2HА2
HА2=R*sinβ
HА2=r*tgβ
Если две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
докво: треугольник ABC и треугольник A1B1C1, угол А = угол А1. АВ/A1B1=АС/A1C1. такие треугольники подобны
∠ABD+∠AED=180° (противоположные углы вписанного четырехугольника)
∠CED=180°-∠AED =∠ABD
△ABC~△DEC (по двум углам)
S(ABC)/S(DEC) =3 <=> AB/DE =√3 (площади подобных треугольников относятся как квадрат коэффициента подобия)
∪AB/2 -∪DE/2 =30° (угол между секущими)
По формуле длины хорды
AB= 2R sin(∪AB/2)
DE= 2R sin(∪DE/2)
∪DE/2=x
sin(x+30°)/sinx =√3 <=>
(sinxcos30° +cosxsin30°)/sinx =√3 <=>
√3/2 +ctgx/2 =√3 <=>
ctgx= √3 <=> x=30°
∪DE=60° => ∠DOE=60° => △DOE - равносторонний, DO=DE
r= DE =AB/√3 =15/√3 =5√3 ~8,66