Высоты делят треугольник АВС на прямоугольные треугольники.
Прямоугольные треугольники АВН и ОВК подобны по острому углу (<ОВК - общий).
Прямоугольные треугольники ОСН и ОВК подобны по острому углу (<ВОК=<HOC - вертикальные).
Значит треугольники АВН и СОН тоже подобны. Из подобия имеем:
АH/ОН=ВH/HС или 8/х=2х/9. Тогда x•2x=9•8
2x²=72, x²=36, x=6
BО=ОH=6
BH=12
Ответ: искомая высота равна 12.
Ответ:
Вообщем ведёшь линию вправо, потом гнёшь в верх на 90 градусов, затем гнёшь вправо, под таким же углом, а дальше вниз и влево, так получится замкнутая ломаная, если после поворота вниз, повернёшь вправо уже не получится.
Поскольку даны координаты только 2-х вершин, задача имеет два решения, так как квадрат может быть построен симметрично относительно стороны АВ..
Найдем длину стороны квадрата.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.Значит длина стороны квадрата равна √[(Хb-Xa)²+(Yb-Ya)²] =√29.
Мы знаем, что диагонали квадрата равны произведению его стороны на √2, то есть = √58 и в точке деления делится пополам. Итак, мы имеем два уравнения: (1)√[(Хd-Xa)²+(Yd-Ya)²] =√29 - для длины |АВ| квадрата и (2)√[(Хd+Xb)²+(Yd+Yb)²] =√58 для длины |ВD|его диагонали. Решим систему из двух уравнений и найдем координаты вершины D(Xd;Yd).
(1) √[(Хd-Xa)²+(Yd-Ya)²] =√29 или (Хd+2)²+(Yd-1)²=29 или Хd²+4Хd+Yd²-2Yd=24.
(2) √[(Хd-Xb)²+(Yd+Yb)²] =√58 или (Хd-3)²+(Yd-3)²=58 или Хd²-6Хd+Yd²-6Yd=40.
Из (1) вычтем (2):10Xd+4Yd=-16. Yd=-(5Xd+8)/2.
Подставляем это значение в (1):
4Хd²+16Xd+25Xd²+80Xd+64+20Xd+32=96 или 29Хd²+116Xd=0 или Хd²+4Xd=0. Отсюда Xd1=0 и Xd2=-4. Соответственно Yd1=-4, а Yd2=6.
Итак, мы получили координаты вершины D: D1(0;-4) и D2(-4;6).
Мы помним, что диагонали квадрата делятся в точке пересечения пополам. Найдем координаты середины диагонали BD. Координаты этой точки равны половине суммы координат начала и конца отрезка (вектора) BD: (0+3)/2=1,5 и (-4+3)/2= -0,5.
Итак, имеем точку пересечения диагоналей: О1(1,5;-0,5) и аналогично О2(-0,5;4,5).
Зная эти координаты, найдем координаты точки С (так как нам известны координаты начала и середины отрезка АС.
(Хс+Xa)/2=Xo и (Yc+Ya)/2=Yo. Отсюда имеем: Хс1=5 и Yc1=-2.
Xc2=1, Yc2=8.
Ответ:координаты вершин квадрата: С1(5;-2), D1(0;-4) и C2(1;8),D2(-4;6).
Из центра квадрата O проведем перпендикуляр OK к стороне CD.
Соединим точки S и K отрезком SK.
Т.к. по условию SO ⊥ ABCD, то SO ⊥ CD и OK является проекцией наклонной SK на плоскость ABCD. По построению OK ⊥ CD ⇒ по теореме о трех перпендикулярах SK ⊥ CD.
Следовательно ∠SKO будет двугранным углом при ребре CD и ∠SKO = 60°
Из прямоугольного ΔSKO:
Найдем сторону квадрата. Т.к. точка O середина квадрата, то она является точкой пересечения диагоналей квадрата. Проведем диагональ AC и рассмотрим ΔACD.
OK ⊥ CD, AD ⊥ CD ⇒ OK ║ AD. Точка O - середина стороны AC ⇒ OK - средняя линия ΔACD.
AD = 2 * OK = 2 * 3 = 6
Ответ: Сторона квадрата равна 6