Треугольник АВС, МН параллельно ВС, АН/НС=2/3, ВС=30
Углы В и С при основании данного равноб. тр-ка:
В = С = (180-120)/2 = 30 град.
Проведем высоту АК на основаниен ВС. Она является и медианой, то есть ВК = ВС/2 = кор21.
Из прям тр-ка АВК:
АВ = ВК /cos30 = 2кор7
Так ка СМ - медиана, ВМ = АВ/2 = кор7
Из тр-ка ВМС по теор. косинусов:
CM^2 = BM^2 + BC^2 - 2*BM*BC*cos30 = 7 +84 - 42 = 49
Значит СМ = кор49 = 7
Ответ: 7.
Треугольник DFE - равнобедренный (дано) DF=FE, DM=ME.
DF+FM+DM = 28 (дано)
2*DF+2*DM = 36 (периметр треугольника DFE - дано). DF+DM = 18.
Следовательно, FM = 28-18=10 ед.
Свойство пересекающихся хорд: точка пересечения хорд делит их на отрезки так, что произведение длин отрезков одной хорды равно произведению длин отрезков другой. У нас: СО·ОД=АО·ОВ ⇒
ОВ=СО·ОД/АО
В отношении отрезков хорды СД примем одну часть за х, тогда
СО:ОД=3х:2х,
СД=3х+2х=10 см
х=2
СО=6 см, ОД=4 см
ОВ=6*4/3=8 см.
Всё!