Докажем,что треугольник АBM=треугольнику СBN
1) АВ=СВ по условию.
2) угол А = углу С по условию.
3) угол В общий
Треугольники равны,значит AM=CN
1. Внешний угол тр-ка равен сумме двух не смежных с ним углов. Их отношение друг к другу равно 1:4, то есть они равны Х и 4*Х градусов. Итак Х+4*Х=5*Х=15°. Отсюда Х=3°. Значит наибольший из этих углов равен 3*4=12°
2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°.
3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он
был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.
1) т к абсд- ромб то у него все стороны равны. (вектора) ад=а=б=сд
дальше пойдут одни вектора
2) сб+сд=са
са=а+б или а+а или б+б (без разницы)
3) оа+ад=од (точка о- пересечение диагоналей ромба)
од=0.5бд
0.5бд= а+оа
оа=0.5са
теперь берем известную величину са (2 действие. возьмем са=2а)
0.5бд=а+2а=3а
бд=3а*2=6а
1. При пересечении двух параллельных прямых третьей
образуется 8 углов - по 4 в каждой точке пересечения: 1 - 4 и 5 - 8 смежные и вертикальные. Группы из 4 углов связаны между собой углами 3 и 6, 4 и 5 - накрест лежащие и 3 и 5, 4 и 6 - односторонние.
вертикальные и накрест лежащие равны между собой, а смежные и односторонние в сумме равны 180°.
Так как нам даны разные углы, то это углы смежные или односторонние. Таким образом, можем записать, что градусные меры этих углов относятся как 1:5, то есть в сумме равны 1х+5х=6х =180°. Отсюда х=30°.Пусть <2=x=30°. Тогда <1= 150°.
Ответ: <1,<4,<5,<8 =150°, а <2,<3,<6,<7 = 30°
2. В условии явная ошибка. Должно быть: "Докажите, что биссектриса ВN угла СВД (Д лежит на прямой АВ), смежного с углом В треугольника, параллельна АС" , так как точки А,В, и D лежат на одной прямой, а биссектриса BN пересекает эту прямую.
Решение.
Угол А при основании АВ равен 60°, следовательно и <B =60°. Смежный с этим углом <CBD = 180°-60°=120°, а биссектриса BN делит его пополам. Следовательно, <NBD=60° и он равен <A, а это соответственные углы при прямых АС и BN и секущей АD. Значит
прямые АС и BN параллельны, что и требовалось доказать.
3. Треугольники MOS и NOP, MON и POS попарно равны по двум сторонам и углу между ними (равенство сторон дано, а углы - вертикальные).
Из равенства треугольников следует равенство сторон MS и NP,
MN и PS. Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник - параллелограмм и MS||MP, а MN||PS, что и требовалось доказать.