Ответ:
Объяснение: найдем площадь основания:
4^2=a^2+a^2 16=2a^2 a^2=8
V=a^2*h=8*6=48(cм^3)
Докажем,что треугольник АBM=треугольнику СBN
1) АВ=СВ по условию.
2) угол А = углу С по условию.
3) угол В общий
Треугольники равны,значит AM=CN
Длина отрезка АМ 40, не важно, какая длинна отрезков КС и СР, но их сумма 20. И известно, что КС=АК и СР=РМ, значит и суммы их равны. Значит КР=АК+РМ=20. АМ это сумма всех этих отрезков, значит 20+20=40
Введем дополнительное обозначение: вершину угла 102° обозначим В. Прямые АЕ и ВF пересекаются прямой АВ, при этом сумма внутренних односторонних углов ∠А+∠В =78°+102°=180°. <em>Если при пересечении двух прямых третьей секущей сумма односторонних углов равна 180°, то прямые параллельны. ⇒</em>
АЕ║BF Тогда угол ЕАD=углу ADB=48° (накрестлежащие). Угол АDF =180°-48°=132° (как смежный углу АDB). Биссектриса DE делит его на два равных: ∠ADE=∠FDE=132°:2=66°. Угол АЕD=∠EDF=66°( накрестлежащие). Углы треугольника АЕD содержат 48°; 66°; 66°. <u>Проверка</u>:48°+66°+66°=180° - соответствует сумме углов треугольника.
1)
Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Рассмотрим один из них ΔАСД. Угол ∠АОС является развернутым углом, который равен 180º. Исходя из этого:
∠СОД = 180º - ∠АОД;
∠СОД = 180º - 70º = 110º.
Треугольник ΔСОД является равнобедренным, в которого углы ∠ОСД и ∠ОДС равны как углы при основании.
Так как сумма всех углов треугольника равна 180º, то:
∠ОСД = (180º - ∠СОД) / 2;
∠ОСД = (180º - 110º) / 2 = 35º.
Ответ: угол ∠ОСД равен 35º.
2)
Периметром ромба есть сумма всех его сторон:
Р = АВ + ВС + СД + АД.
Для этого нужно вычислить сторону ромба. Рассмотрим треугольник ΔАВО. Так как диагонали ромба пересекаются в точке О и делятся пополам:
АО = ОС = АС / 2;
АО = ОС = 10 / 2 = 5 см.
Диагонали ромба так же являются биссектрисами его углов. Таким образом:
∠АВО = ∠АВС / 2;
∠АВО = 60º / 2 = 30º.
Для вычисления Ав применим теорему синусов:
sin В = АО / АВ;
АВ = АО / sin В;
sin 30º = 1 / 2 = 0,5;
АВ = 5 / 0,5 = 10 см.
Р = 10 + 10 + 10 + 10 = 40 см.
Ответ: периметр ромба равен 40 см.