Определение: <span><em>Правильная треугольная призма</em></span><span><em> — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.</em></span>
Площадь полной поверхности призмы - сумма площади боковой поверхности и площади двух оснований.
Боковые грани перпендикулярны основаниям, ⇒ они прямоугольники.
S бок=Росн•h
Р осн. =3а
а=АС=ВС=АВ
По т.Пифагора
АС=√(AC²-CC1²)=√144=12
S бок=3•12•9=324 см²
S осн=(а²√3):4
2 S осн=2•144•√3):4=72√3 см²
S полн=324+72√3=36(9+2√3) см² ≈448,7 см<span>²</span>
Высота равна среднему геометрическому проекций катетов на гипотенузу, то есть
катеты далее находишь, например, по теореме Пифагора из маленьких треугольников, созданных высотой, катетами и из проекциями.
Применим формулу из геометрии
квадрат гипотенузы равен сумме квадратов катетов
т.е. с*с=а*а+в*в
1) а=4,в=3
с=5
2) а=8,в=6
с=10
с- длина отрезка
1) АС=(0-(-2);9-(-1))=(2;10)
2) ВД=(-4-1;1-2)=(-5;-1)
1.Формула нахождения площади в прямоугольнике : а*в где а - первая сторона ,а в- это вторая сторона.
а=24см
в=25см
<span>24*25=600см2(квадратных)
2.</span>Треугольник АВС, где угол В-прямой.Угол А=60градусов, тогда угол С=30градусов, гипотенуза равна 40 см.
Катет, лежащий против угла в 30градусов равен половине длины гипотенузы, т.е 20см.
по теореме Пифагора
40^2-20^2=1600-400=1200
второй катет равен корню квадратному из 1200
1200=3*400=20корень из 3
площадь треугольника равна 1/2 произведения катетов (первый катет 20см, а второй катет - 20 корень из 3)
S=1/2*20*20 корень из 3
S=200 корень из 3(см2)