1) Дано: прямоугольная трапеция ABCD, <B=<A=90°, AC - биссектриса=6см, <BAC=<CAD=45°
Найти: S ABCD
Решение:
Проведём высоту СН.
Из ΔАСН
<ACH=180°-45°-90°=45°, ==>ΔACH - равнобедренный,
Из ΔАВС
<ACB=180°-45°-90°=45°, ==>ΔABC - равнобедренный,
BC=AH, ==> AB=CH=BC=AH=a ==>
ABCH - квадрат, тогда
6=а√2
а=3√2
Из ΔСНD
tg60°=
HD=
S ΔCHD=1/2(3√2*√6)=1/2*6√3=3√3
S ABCH=a²=18
S ABCD=S ΔCHD+S ABCH=18+3√3
Ответ: 18+3√3
2) Эту задачу невозможно решить без дополнительных условий, а именно без длины АК. Напишите длину и я напишу решение.
Ответ:
Объяснение:
Точки А і В лежать по один бік від прямої на відстані 7 см і 15 см від неї
В треуг. ADC BE это линия делящая пополам стороны AD и AC, т.к. она проходит через середину AD параллельно DC/
Треуг. ABC равнобедренный и линия BE в нём является медианой и высотой, т.е. она перпендикулярна AC и параллельна DC - значит DC перпендик. AC
Проведем от центра описанной окружности радиусы к стороне равной радиусу окружности тогда полученный треугольник равносторонний тогда угол при вершине равен 60 градусов проведем теперь все остальные радиусы к другим сторонам полученные равнобедренные треуг будут равны по равной боковой стороне как радиусам и равным основаниям тогда все остальные углы при вершине равны сумма углов при вершине o центра окружности равно 360 градусов тожа остальные углы при вершине центра окр равны 10x+60=360 x=30 градусов далее легко понять что эти 9 равных углов при равных сторонах равна 2 углам при основании равноб треуг имеем угол при основании 180-30/2=75 Тогда эти 9 углов 11 угольника равны 150 градусов а те 2 оставшихся угла что опираются на сторону равную радиусу то есть там где равносторонний треуг тогда эти углы равны 75+60=135 градусов ответ 9 углов 150 градусов другие 2 равны 135
Ответ:
Объяснение:
Так как Δ равнобедренный ,углы при основании равны.
∠КРС=46°.
Смежный ему угол.
180-46=134°.