Так...построим этот треугольник...опустим высоту АД на гипотенузу BC ...получается еще один прямоугольный треугольник АБД, отсюда найдем...проекцию большего катета на гипотенузу....400 = 144 + х (квадрат), х = 16..теперь у нас высота которая дана нам..это 12 см по формуле H(квадрат) = ХУ, где х и у проекции катетов на гипотенузу..так как мы одну из них нашли (16 см) ...подставляем под формулу..найдем отсюда вторую проекцию 144 = 16*у, у = 9..теперь у нас есть гипотенуза от треугольника АБС, отсюда по теореме пифагора найдем катет АС..625 = 400 + АС(квадрат) , АС = 15 см.<span>СОS C = прилежащий катет / на гипотенузу...отсюда..COS C = 15/25 = 3/5.</span><span>Вот так
</span>
Решение смотри в рисунке.
Если будут вопросы - пиши
угол C=90,значит треуг прямоуг,если угол B =60,то A= 30,CB=6,он лежит напротив угла в 30 гр,тогда AB=12
Площадь ромба равна половине произведения его диагоналей
Пусть x - неизвестная диагональ. Получим уравнение
BO = BD/2 = 6/2 = 3 см (диагонали ромба делятся пополам)
AO = AC/2 = 4/2 = 2 см (диагонали ромба делятся пополам)
Рассмотрим ΔABO - прямоугольный (диагонали ромба взаимно перпендикулярны): BO = 3 см, AO = 2 см, AB - ?
По теореме Пифагора
==> AB = BC = CD = AD = √13 см (стороны ромба равны)
Ответ: AB = BC = CD = AD = √13 см