Образовались 8 углов, 4 острых угла равных между собой и 4 тупых, также равных между собой. Сумма одного острого и одного тупого угла равна 180°. По условию сумма двух углов равна 296°. Значит в задаче известна сумма двух равных углов, каждый из которых равен 268/2=134°, Смежный угол к любому из них равен 180-134=46°.
Ответ: 46°; 134°.
Площадь равна произведению полусуммы оснований на высоту.
a+b
S=______ х h
2
18+12
______ x 9 = 135
2
Ответ: Площадь трапеции 135
Дан треугольник АВС.
В нём высота и медиана ВД., т.к. ВД одновременно и медиана, и высота, то треугольник АВС- равнобедренный.
АС-основание, АД=ДС=18:2=9 см; АВ=ВС.
треугольник АВД прямоугольный, в котором ∠АДВ=90°.
По теореме Пифагора АВ=√АД²+ВД²=√81+144=√225=15 см
и ВС=15 см
радиус вписанной в равнобедренный Δ окружности равен:
r=√p(p-a)(p-b)(p-b)/p=√24(24-18)(24-15)(24-15)/24=√24*6*9*9/24=9*√144/24
=4,5 cм
ответ: 4,5 см
Если нам дан правильный семиугольник, то по формуле сумма углов равна
180(n-2), где n -число сторон.
Отсюда имеем сумма внутренних углов правильного семиугольника равна 180 * 5 = 900 градусов.