75 т.к. Ado и bco равнобедренные (ao=do и co=bo). Наверно так
<span><span>если нижнее основание а, верхнее b, и искомый отрезок - длины х, то прощади трапеций будут такие
S1 = (b + x)*h1/2; S2 = (a + x)*h2/2;
или, поскольку S1 = S2,
(b + x)/(a + x) = h2/h1;
Чтобы получить соотношение между h1 и h2, проведем прямую,
параллельную боковой стороне через конец отрезка х, лежащий на ДРУГОЙ
боковой стороне.
Малое основание продолжим до пересечения с этой прямой. Получилось 2
подобных треугольника с основаниями (x - b) и (a - x); из подобия
следует
h2/h1 = (a - x)/(x - b);
поскольку соответствующие высоты так же пропорциональны, как и стороны.
Итак, имеем уравнение для х
(b + x)/(a + x) = (a - x)/(x - b);
x^2 - b^2 = a^2 - b^2;
x = корень((a^2 + b^2)/2);
Подставляем численные значения, получаем
х = корень(24^2 + 7^2) = 25;</span></span>
1) Так как треугольник АМЕ равнобедренный, то него углы при основании равны. Значит, равны и
их половинки. Обозначим каждую их четырех половинок за х.
2) Смотрим на треугольник АВЕ. В нем угол В равен 130°.
(он вертикальный с углом NBO).
3) Знаем,
что сумма углов в треугольнике равна
180. Получим:
х+х+130=180
2х=50
Х=25° - одна половинка
Тогда ∠А=∠Е=50°.
4) ∠ М=180 - 2∠ А=180-100=80°
Ответ: 80
Угол АВС опирается на дугу АС, которая равна 2 угла АВС.( дуга АС=2 * 30=60 градусов).
Построим центральный угол АОС и он буде равен дуге АС(60 градусов). Так как стороны треугольника АОС радиусы ( АО=СО=радиус), то угол ОАС= углу ОСА = (180-60)/2=60 градусов. Следовательно треугольник АОС равносторонний, и значит АО=СО=АС=диаметр/2=15/2=7,5см
Ответ: АС=7,5 см.