Дано:
MN = 36
угол M = 30°
угол NPK = 90°
угол NKM = 90°
Найти:
MP, PN - ?
Решение:
Рассмотрим треугольник NKM:
NK = 0.5 NM (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
NK=0.5 × 36 = 18
Рассмотрим треугольник KPM:
угол NPK = угол KPM = 90°
угол PKM = 180° - 90° - 30° = 60° (т. к. сумма углов треугольника равна 180°)
Рассмотрим треугольник NPK:
угол NKP = угол NKM - угол PKM
угол NKP = 90° - 60° = 30°
PN = 0.5 NK (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
PN = 0.5 × 18 = 9
MP = MN - PN
MP = 36 - 9 = 27
Ответ: MP = 27; PN = 9.
Пусть D - середина гипотенузы AC, M лежит на AB, N лежит на BC. Поскольку вписанный угол B прямой, он опирается на диаметр. Итак, MN - диаметр этой окружности. По условию AC=2MN, причем AD=DC=BD (медиана прямого угла равна половине гипотенузы). Поэтому BD, будучи хордой этой окружности, равна диаметру. Следовательно, BD также является диаметром. Поэтому диагонали BMDN в точке пересечения делятся пополам, откуда BMDN - параллелограмм, а раз угол B прямой, это прямоугольник. Хотя это уже для нас не важно. Важно то, что MD параллельно BC, откуда MD - средняя линия треугольника ABC, то есть M - середина AB. Точно так же N - середина BC.
Ответ:
1,1 ед. изм.
Объяснение:
Сторона квадрата а=√1,21=1,1 (ед. изм.)
Стороны ромба равны а,
диагонали пересекаются под прямым углом, точкой пересечения делятся пополам
мы проходим эту тему поэтому нету проблем с этой темой