Ответ:
57.
Объяснение:
сторона ромба равна 76+19=95.
Высота образовала прямоугольный треугольник, у которого гипотенуза равна 95. а один из катетов равен 19. Высота ромба равна другому катету этого треугольника.По теореме Пифагора h²=95²-76².
h²=9025-5776=3249;
h=√3249=57.
Гипотенуза прямоугольного треугольника равна диаметру описанной окружности, значит, радиус=10/2=5(см)
Трапеция АВСД с углом А=30° и углои Д=60°. Достроим высоты ВН и СН1. Треуг. ДСН1 прямоуг. угол ДСН1=30° и значит противолежащий катет(Н1Д) будет оавен половине гипотенузы. Пусть Н1Д = х, тогда СД=2х, по теор Пифагора находим высоту СН1, она равна х корней из 3-ех. ВН=СН1, ВН лежит напротив угла в 30° и значит она в два раза меньше гипотенузы. АВ=2х корней из 3-ех. И по теор. Пифагора находим АН, АН^2=12х^2-3х^2=9х^2. АН=3х. И получается уровнение: 8-4-х=3х (основание АД-НД(которое равно х)-НН1(верхнее основание)), 4х=4, х=1. Тогда правая сторона трапеции равна 2, а левая - 2 корня из 3-ех