<span>треугольники МОК и МСН подобны по двум углам...
1) --- они прямоугольные по построению...
2) углы СМН = ОМК --- МК-высота равнобедренного треугольника, проведенная к основанию, => МК и биссектриса и медиана...
СН / ОК = МН / МК
СН = ОК*МН / МК
ОК = ОР / 2 = 6
МК^2 = MP^2 - KP^2 = (MH+PH)^2 - OK^2 = 100-36 = 64
MK = 8
CH = 6*6 / 8 = 9/2 = 4.5</span>
Складываем DH и CH, находим сторону CD= 25, в ромбе все стороны равны, отсюда по теореме Пифагора находим высоту AH: AH^2= AD^2-DH^2; 625-576=49 извлекаем корень, получаем 7
№1 .треугольник МРЕ подобен треугольнику МНК по двум равным углам (уголМ-общий, уголМЕР=уголМКН как соответственные, МР/МН=МЕ/МК, 8/12=6/МК, МК=12*6/8=9, МР/МН=РЕ/НК=8/12=3/4, площади подобных треугольников относятся как квадрат отношения сторон, площадь МЕР/площадьМНК=МР/МН в квадрате)=(3/4) в квадрате=9/16 №2 треугольник АВС подобен треугольнику МНК по второму признаку по двум пропорцианальным сторонам и равному углу между ними (уголВ=угоН=70), МН/АВ=6/12=1/2, НК/ЕС=9/18=1/2 отношения сторон равны треугольники подобны, напротив подобных сторон лежат равные углы, уголК=уголС=60, МН/АВ=МК/АС, 6/12=7/АС, АС=12*7/6=14, №3 треугольник АОС подобен треугольнику ВОД по двум равным углам (уголАСО=уголВДО, уголАОС=уголВОД как вертикальные), АО/ОВ=2/3, периметры подобных треугольников относятся как подобные стороны, АО/ОВ=периметрАОС/периметрВОД, 2/3=периметрАОС/21, периметрАОС=21*2/3=14 №4трапеция АВСД, АД=10, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголВСО=уголОАД как внутренние разносторонние), площади подобных треугольников относятся как квадраты подобных сторон, площадь ВОС/площадь АОД=ВС в квадрате/АД в квадрате, 8/32=ВС в квадрате/100, ВС в квадрате=100*8/32=25, ВС=5
Угол mkn=150-90=60 градусов
<span>Поскольку трапеция прямая</span>. угол nmk=30 градусов.
mk=2*2 =4 см по свойству прямоугольного треугольника с углом 30градусов.
<span>Угол kрm</span>=30 градусов.
По тому же свойству mр=8 см
средняя линия трапеции
(8+2):2=5 см
Доказательство:
Рассмотрим треугольник АОВ и треуголник СОD
- АО=ОD (тк треуголник АОD - равнобедр)
- AС=СD
- Угол АОВ равен углу СОD (тк эти углы вертикальные)
Следовательно треуголник АОВ= треугольнику СОD ( по двум сторонам и углу между ними)
следовательно
АВ= CD (равенство соответствующих элементов)