1. Найдем коэффициент подобия (пропорциональности)
6/3,5=60/35=12/7 (во столько раз больший треугольник БОЛЬШЕ, а меньший МЕНЬШЕ)
2. Оставшиеся стороны треугольника уменьшаем в 12/7 раза
4:(12/7)=4*7/12=7/3 (см)
3:(12/7)=3*7/12=7/4 (см)
Из подобия имеем AO/OD=BO/CO откуда следует первое соотношение
CO+OB=CB
BO/CO=3/5 CO+3/5CO=64 8/5CO=64
CO=(64/8)*5=40
BO=64-40=24
Решаем с помощью дискременанта получается ответ
X1=3 x²=-8
Обозначим ромб АВСД. Проведём диагонали АС и ВД. Точка их пересечения О. Рассмотрим треугольник АВО. Проведём в нём высоту ОК на АВ. Тогда по условию ВК=3, АК=12. В прямоугольном треугольнике высота проведённая на гипотенузу делит его на подобные треугольники. Отсюда ВК/ОК=ОК/АК. Или 3/ОК=ОК/12. ОТсюда ОК=6. По теореме Пифагора ВО=корень из(ВК квадрат+ОК квадрат) = корень из(9+36)=3 корня из 5. Отсюда диагональ ВД=2 ВО=6 корней из 5. Из подобия треугольников ВОК и АОК получим АО/АК=ВО/ОК. Или АО/12=(3 корня из 5)/6. Отсюда АО=6 корней из 5. Тогда диагональ АС=2АО=12 корней из 5.