Все грани тетраэдра - равносторонние треугольники, значит в тр-ке АSС: АР (высота) = (√3/2)*а = 3√3.
Основание искомой пирамиды - сечение АВР - равнобедренный тр-к с равными сторонами АР и ВР, равными 3√3 и основанием АВ=6. Значит площадь основания искомой пирамиды равна Sо=(b/4)*√(4a²-b²), где а - боковая сторона, b- основание. So =(6/4)*√72 = 9√2.
Осталось найти высоту SО искомой пирамиды. Сечение АВР перпендикулярно грани SС, значит SP перпендикулярна плоскости сечения и является высотой искомой пирамиды.
Тогда объем искомой пирамиды равен: V=(1/3)*So*h = (1/3)*9√2*3 = 9√2см³
Если мое решение вам помогло, то отметьте его как лучшее
Сумма углов треугольника = 180 град. он равнобедренный значит 2 угла одинаковы. 45+45= 90 на столько больше вдвоем от основания. 180-90= 90
90-45=45
ответ 45, 45, 90
Сначало найдёшь (/AB*AC*AD)6/1 под этой формулы потом сделаешь под формулой крамера
1. По правилу определения ромба мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
Вектор Nk=(6-5;6-3)=(1;3)
вектор Kp=(-3;-1)
ВЕКтор РМ=(1;3)
Теперь объединяем это фигурной скобкой и пишем , следовательно MN=NK=KP=PM, а из этого следуют что четырёх угольник MNPK - квадрат, по определению.
2. По свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(3;3)
NP=(-2;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению