Объём правильной четырёхугольной призмы находится по формуле:
V=Sоснования*h
У правильной четырёхугольной призмы в основании лежит квадрат, следовательно формула преобразуется в след.вид:
V=a²*h
где а - сторона основания
Найдём высоту (h).
Для этого найдём диагональ основания (обзову её d для удобства). Она будет являться одним из катетов прямоугольного треугольника. Второй катет - это искомая высота, а гипотенуза - диагональ призмы. Считаем:
d²=a²+a²
d²=8²+8²
d²=128
d=√128
Теперь считаем высоту:
h²=18²-(√128)²
h²=324-128
h²=196
h=√196
h=14
Ну и теперь возвращаемся к формуле объёма:
V=8²*14
V=64*14
V=896
Ответ: 896 см³
Обозначим данный треугольник АВС,а неизвестный LMK.
LM,KM и LM-средние линии тр.АВС => LM=0,5 AC, KL=0,5 BC, MK=0,5 AB. LM=3,5; KL=2,5; MK=4.
P klm=3,5+2,5+4=10.
Уг.1+уг.2=180
уг.1=5/4×уг2
подставим
5/4×уг2+уг2=180
уг2=80
уг 1=100
г1=уг4
уг2=уг3
как накрест лежашие
∠DME = ∠DNE = 90° - углы, опирающиеся на диаметр
ΔCMN подобен ΔСED по 2 пропорциональным сторонам и углу между ними: |cosα| = CN/CD = CM/CE = MN/DE
По теореме косинусов в ΔАВС: |cosα| = (а² + b² - c²)/2ab
MN/DE = (a² + b² - c²)/2ab ⇒ MN = c•(a² + b² - c²)/4ab