1) В Δ ABC ∠C=120°
Значит ∠A=
=30° (т.к. Δ равнобедренный)
2) Проведем в этом треугольнике высоту CH из (·)C
3) Δ ACH - прямоугольный по построению
sin∠CAH=
= 30°
CH = sin 30° * 4 = 4 * 0.5 = 2
4) В прямоугольнике ABB1A1 проведем высоту HK, тогда HK = AA1 по св-у прямоугольника, значит HK = 8
5) Соединим (·)K с точкой (·)C
6) CH - перпендикуляр
HK - проекция
CK - наклонная
CK ⊥ HK по Т.Т.П.
Значит ∠CKH - искомый угол
7) tg∠CKH =
= 0.25
∠CKH = arctg (0.25)
12 см я так думаю но не уверен
Ответ:
4 см
Объяснение:
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4
1.BCD=DCA=1/2*C=45 по свойству биссектрисы
2.A=180-DCA-ADC=180-45-105=30 по теореме о сумме углов треугольника
3. B=180-C-A=180 - 90-30=60 по теореме о сумме углов треугольника
90 градусов )))))))))))))))))))))))))))))))))))))))))