A1=5,d=2
a16=a1+15d
a16=5+15*2=5+30=35
5X-y=11
{5x-y=11
=>
{7x+2y=12
{x+3y=10 {x=10-3y {x=10-3y {x=10-3y{xy=3 ⇔ {y·(10-3y)=3 ⇔ {10y-3y²=3 ⇔ {10y-3y²-3=0 ⇔
10y-3y²-3=0 ⇔ {x=10-3y {x=10-3·2 {x=10-6 {x=4-3y²+10y-3=0 /(-1) {y=2 ⇔ {y=2 ⇔ {y=2 ⇔ {y=2.3y²-10y+3=0D=100-36=64 ⇔ {x=10-3y {x=10-3·1/3 {x=10-1 {x=9y₁=(10+8)/6=18/6=2. {y=1/3 ⇔ {y=1/3 ⇔ {y=1/3 ⇔ {y=1/3.y₂=(10-8)/6=2/6=1/3. Ответ: (4;2);(9;1/3).
5x-y=11
5*2-y=11
y=1
Докажите что выражение x^2-4x+5 принимает положительные значения при всех значениях x
Первый вариант
x^2-4x+5 =x^2-4x+4+1 =(x-2)^2+1
так как квадрат разности (х-2)^2 >=0 при всех значениях х на числовой оси то
сумма (x-2)^2+1>0 или принимает только положительные значения при всех значениях х
Второй вариант
x^2-4x+5 =0
D=16-20=-4<0
Так как коэффициент при х^2 больше нуля (1>0) и дискриминант отрицателен, то гарфик параболы не имеет точек пересечения с осью Ох и находится выше оси Ох.
Поэтому при любых значениях х x^2-4x+5>0