Параллелограмм - плоская фигура. Диагонали в точке пересечения делятся пополам. Следовательно, координаты точки Е - середины отрезка АС: Е((2+0)/2;(3+3)/2;(2+0)/2) => Е(1;3;1), а координаты точки В - конца вектора ОВ(2;6;2). Тогда вектор ОВ{2;6;2}, его модуль (длина) |OB|=√(2²+6²+2²) = √44. Вектор AC{-2;0;2}, а его модуль |AC|= √(-2²+0²+2²) = 2√2. Найдем косинус угла между векторами ОВ и АС по формуле:
Cosφ =(ОВx*ACx +OBy*ACy+OBz*ACz)/(|OB|*|AC|) = (-4 +0+4)/(4√11) = 0. => φ = 90°.
Ответ а) φ = 90°.
AD=BC ( из равенства соответствующих сторон)
угол АВD=CDB ( как накрест лежащие при АВ||СD и секущей BD)
угол ADB=CBD ( по сторонам и прилежащим к ней углам) следовательно
AB=DC
1) 180-144=46 градусов.
2)180=x+9x
180=10x
180:10=18
18*1=18(первый угол)
18*9=162(второй угол)
Из рисунка (см. вложение) более-менее очевидно, что O2C - биссектриса прямого угла ACB (симметрия налицо). А т.к. углы АСО1, ВСО3 по 45 градусов, то О2С - высота в треугольнике О1О2О3.
Дальше все ясно, искомая площадь равна 1/2*7/sqrt(2)*7/sqrt(2)=49/4.