Пусть О - центр окружности. Т.к. касательная пересекается с окружностью только в одной точке, то А и С - точки касания. Отсюда AD=DC=5 как отрезки касательных из одной точки. Кроме того, прямая АО, которая пересекает BC в точке F перпендикулярна AD. Значит OF - высота равнобедренного треугольника BCO, ведь BC||AD. Отсюда F - середина BC. т.е. FC=1. Значит cos∠D=(AD-FC)/DC=(5-1)/5=4/5. Отсюда OC=DC*tg(∠D/2)=DC*√((1-cos∠D)/(1+cos∠D))=5√((1-4/5)/(1+4/5))=5/3.
Треугольники АВС и А1В1С подобны...
А1В1 / АВ = А1С / АС = В1С / ВС
А1В1 = АВ * А1С / АС
<span>1) AA1 / AC = 2 / 3 => </span>
AA1 --- это 2 части, АС --- это 3 части, на А1С остается 1 часть)))
=> A1B1 = 15*1 / 3 = 5
2) AA1 / A1C = 5 / 3 =>
AA1 --- это 5 частей, А1С --- это 3 части, АС = АА1+А1С = 8 частей)))
=> A1B1 = 8*3 / 8 = 3
4) => A1B1 = b*c / (AA1+A1C) = b*c / (a+c)
----------------------------------------------------------------
А1В1 / АВ = В1С / ВС
А1В1 = АВ * В1С / ВС
<span>3) => A1B1 = 4*10 / 5 = 8 </span>
1
∠1=∠2 как вертикальные
Треугольники равны по двум сторонам и углу между ними
2
Угол смежный с углом 105° равен 180°-105°=75°
Треугольник равнобедренный. углы при основании равны.
Угол МСN = 75° как вертикальный с углом в 75°
3. Высота равнобедренного треугольника является его медианой и биссектрисой
АС=4 см
∠АВС=100°
4
Из равенства треугольников следует равенство соответствующих углов.
∠3=∠4
Треугольники ВЕС и FED равны по двум сторонам и углу между ними
ЕС- общая
ВС=BD - по условию
∠3=∠4
5.
∠3=∠4 - как смежные к равным между собой
180°-∠1=180°-∠2
АD=CF
Прибавим с каждой стороны DC
<u>AD</u>+DC=DC+<u>C</u>F
AC=DF
Треугольники BCF и FED равны по двум сторонам и углу между ними
AC=DF
AB=FE
∠3=∠4
1)x+12+x+x=45
3x=45-12
3x=33
x=11
11+12=23
O: 11 cm. 11cm. 23cm
-----------------------------------------------------------------------------------------------------
2) (x+12)+(x+12)+x=45
3x+24=45
3x=21
x=7
7+12=19
O: 19cm. 19cm. 7cm