AD = AE ⇒ ΔEAD - равнобедренный ⇒
∠AED = ∠ADE - как углы при основании
∠AED + ∠AEC = 180° - как смежные углы
∠ADE + ∠ADB = 180° - как смежные углы ⇒
∠AEC = ∠ADB - как углы, смежные к равным углам
Рассмотрим ΔADB и ΔAEC
AD = AE, CE = BD - по условию
∠AEC = ∠ADB ⇒
ΔADB = ΔAEC по двум равным сторонам и углу между ними (первый признак равенства треугольников) ⇒
AB = AC - как стороны равных треугольников, лежащие против равных тупых углов.
<em>AB = AC ⇒ ΔABC - равнобедренный.</em>
Площадь трапеции равна произведению высоты на полусумму оснований. <em>Полусумма оснований- это средняя <u>линия трапеции</u>. </em>
Опустив высоту ВН, получим прямоугольный треугольник АВН, в котором <u>высота – катет, противолежащий углу 30</u>°.
По свойству такого катета находим <em>ВН</em>=АВ:2=20:2=10 см
<em>Ѕ</em>=10•16=<em>160</em> см²
Докажем что треугольник ABD - равнобедренный
Биссектрисса делит угол пополам значит <BAD=<DAC
<DAC=<DBA - как накрест лежащие
значит и <BAD=<BDA
треугольник ABD -ранобедренный
<BAD=(180-32):2=74
<A = 74+74=148
Vусеченной пирамиды = H *(S1+корень(S1*S2)+S2) / 3
пирамида правильная => в основании квадрат
S1 = 8*8 = 64
S2 = 4*4 = 16
корень(S1*S2) = корень(64*16) = 8*4 = 32
H можно найти из равнобедренной трапеции с основаниями===диагоналями оснований пирамиды (квадратов) и диагональю трапеции===диагональю пирамиды
диагональ основания1 = корень(8*8+8*8) = корень(2*8*8) = 8корень(2)
диагональ основания2 = корень(4*4+4*4) = корень(2*4*4) = 4корень(2)
(8корень(2) - 4корень(2))/2 = 2корень(2)
(8корень(2) - 2корень(2))/2 = 6корень(2)
по т.Пифагора H^2 = 11*11 - (6корень(2))^2 = 121 - 36*2 = 49
H = 7
Vусеченной пирамиды = 7 *(64+32+16) / 3 = 7*112/3 = 261_1/3