Касательные исходят из точки С
угол ОВС = углу ОАС = 90 градусов (радиусы к касательным)
угол АОВ = 360 - 90 - 90 - 56 = 124 градуса
ОА = ОВ (радиусы) тогда АВО = (180 - 124) / 2 = 28 градусов
<span>Из свойства трапеции треугольники ВОС и АОД подобны. Значит их стороны относятся так же как их периметры , т.е. ВС/АД=3/5. Другое свойство трапеции даёт отношение ВО/ОД=ВС/АД. Но ОД=24-ОВ. То есть ВО/(24-ОВ)=3/5. Отсюда ОВ=9, ОД=15.</span>
если все квадратики различны то получится 8 квадратов следующих размеров:
1+2+3+4+5+6+7+8 их общая сумма 36:
36 не равно 25 значит утверждение не верно
<span>Диагонали ромба перпендикулярны друг другу, поэтому углы ВОС =90, 31 и 59 градусов.</span>