10,5у+18,9=5,1у-18,36
10,5у-5,1у=-18,36-18,9
5,4у=-37,26
у=-6,9
Ответ: 8,46 см²
Объяснение: y=2x²-6 парабола с вершиной в точке(0;-6) и корнями (2;-2)
проведем прямую через точки (2;0) и (0;-6)
-2y=-6x+12
y=3x-6
теперь найдем уравнение касательной к параболе
2x²-6=3x-n (тк у параболы и касательной одна общая точка , то дискриминант будет равен 0)
2x²-3x-6+n=0
D=0⇒b²-4ac=0
9-4*(n-6)*2=0
9+48-8n=0
8n=57
n=57/8⇒ уравнение касательной
у=3x-57/8 она пересекает ось OX в точке
3x-57/8=0
3x=57/8
x=19/8
ось OY пересекает в точке
y=-57/8
тогда наименьшая площадь прямоугольного треугольника ограниченного осями OX и OY и касательной к параболе y=2x²-6
S=(x*y)/2=(19/8*57/8)/2=1083/128=8.46 см²
Ответ (0;0) и (4;2)
√х=0,5х
(√х)²=(0,5х)²
х=0,25х²
х-0,25х²=0
х(1-0,25х)=0
х=0 и -0,25х=-1
х= -1/ (-0,25)=100/25=4
Решение примера: 0.000828